
HW3P1 Bootcamp

RNNs, GRUs, CTC, and Greedy/Beam Search

Spring 2025

Acknowledgement: Fall 2024 TAs

Logistics

- Early Submission : March 14th, 11:59pm
- On-Time Submission: March 28th, 11:59pm

Two approaches: Standard and Autograd

 No late days can be used for Homework part 1s, please plan accordingly!

Structure of RNNs

A simple RNN that does seq-to-seq task with one RNN cell

RNN Cell Forward and Backward

Tip: very similar to linear.py in HW1P1.

We are just applying a tanh function to linear transformations of

and

Why Tanh though?

Sigmoid Tanh ReLU

RNN Cell Forward and Backward
Why tanh?

1. Non-linearity

2. Tanh is bounded; can mitigate exploding gradient problem

RNN Phoneme Classifier

● Many-to-one task

● Input sequence is passed through a few

layers of RNN cells
● The final hidden state at the final

timestamp is passed through a linear
layer to give us the phoneme class

GRU Cell Forward and Backward
Reset Gate:

Update Gate:

Memory Content:

Hidden State:

GRU Cell Forward and Backward contin.

Why sigmoid?

● Sigmoid is limited to the values 0 to 1 → This can

describe how much info to pass
○ Close to 0: we want to “forget”

○ Close to 1: we want to “remember”

Reset Gate:

Update Gate:

Memory Content:

Hidden State:

GRU Cell Forward and Backward contin.

We do an element-wise product with a linear transformation of the

previous hidden-state. We are combining the transformation of the

inputs from candidate space with the information we are retaining from

previous hidden state.

Reset Gate:

Update Gate:

Memory Content:

Hidden State:

GRU Cell Forward and Backward contin.
● GRU backward be the longest question in HW3P1

● Tips:
○ All intermediate dWs and dbs should be correct to make sure that your dx and dh are

correct

○ Useful resource: How to compute a derivative

○ Break down complicated equations into unary/binary operations

○ e.g. f(x) = tanh(r ☉ (Wx+b)), we want to decompose it into:

■ Z1 = Wx + b

■ Z2 = r ☉ (Wx+b)

■ f(x) = tanh(Z2)

■ Derivative for each step would be easy and lastly we apply chain rule to get our f’(x)

https://deeplearning.cs.cmu.edu/S25/document/readings/How%20to%20compute%20a%20derivative.pdf

Chain rule through element-wise multiplication
Assume that the shape of derivative wrt a matrix is the same as that of the matrix.

Let C = A ⊙ B (element-wise)

- This means A, B, and C have the same shape

- Only elements of the same position are related to each other → derivatives flow only position-wise.

- Therefore, dLdA = dLdC ⊙ B and dLdB = dLdC ⊙ A

Chain rule through matrix multiplication

Assume that the shape of derivative wrt a matrix is the same as that of the matrix.

Let C = AB (matrix multiplication). The shapes of A, B, C are a x b, b x c, and c x a respectively.

● Think about which all elements of C does A(i, j) influence.

● It influences all elements of C in row i through multiplication with the j-th element in every column

of B.

● So, dLdA(i, j) = sum[k=1 to c] dLdC(i, k)B(j, k)

● Doing this for every element gives dLdA = dLdC X B.T (matrix multiplication)

DON’T JUST MATCH SHAPES. UNDERSTAND HOW VALUES MATCH INSTEAD. SHAPES WILL
FOLLOW.

Chain rule through matrix multiplication (contin.)

GRU Inference - Character Predictor
Many-to-many task, the model is supposed to have an output for each timestamp.

Different from RNN Phoneme classifier, here we need to pass the hidden state at each timestamp to a

linear layer to predict the character at each t, instead of just the previous timestamp’s hidden state.

Connectionist Temporal Classification (CTC)

1) Why CTC?
2) How does it work?
3) Implementation in HW3 P1

Why CTC?

Input (from RNN over time) → "hhheelllooo" (length = 10)

Target sequence → "hello"

❏ CTC is used to calculate loss when our input sequences and output labels have
different lengths and no fixed alignment.

❏ This method allows models to learn without needing pre-aligned data, which is
crucial for applications like speech recognition.

Implementation [CTC/CTC.py]

❏ CTC
❏ extend_target_with_blank()
❏ get_forward_probs()
❏ get_backward_probs()
❏ get_posterior_probs()

❏ CTCLoss

1. Extend target with blank

1. Extend target with blank

2. Forward Probabilities

2. Forward Probabilities

3. Backward Algorithm

❏ Computing probabilities from right to left
❏ β(t, r) represents probability of generating the rest of the sequence starting from

time t

4. CTC Posterior Probability

❏ Represents probability of being in state r at time t given input sequence.

5. CTC Loss Computation

❏ Once we know the posterior probability, we can plug it in to calculate the loss,
which will ultimately be used to train your network.

CTC Decoding [CTC/CTCDecoding.py]
❏ CTC loss gives us a probability distribution over possible alignments, but it does not

directly produce the final output sequence.

❏ Instead, we need a decoding strategy to transform the model's output into meaningful

text. There are two primary methods for this: Greedy Search and Beam Search.

I. Greedy Search

Pseudocode provided in the write-up.

❏ Picks highest probability token at each timestep.

❏ Collapses repeated tokens and removes blanks.

II. Beam Search

II. Beam Search

Pseudocode can be found in the write-up and in future lectures slides.

❏

Thank you!

Q&A

