HW3P1 Bootcamp

RNNs, GRUs, CTC, and Greedy/Beam Search
Spring 2025
Acknowledgement: Fall 2024 TAs

Logistics

- Early Submission : March 14th, 11:59pm
- On-Time Submission: March 28th, 11:59pm

Two approaches: Standard and Autograd

No late days can be used for Homework part 1s, please plan accordingly!

Structure of RNNs

A simple RNN that does seg-to-seq task with one RNN cell

RNN Cell Forward and Backward

@ @ = Wih-l- bin + Whh + brn)

a Tip: very similar to linear.py in HW1P1.

[tanh | | We are just applying a tanh function to linear transformations of x;
) and ht—l

N

—

Xt

Why Tanh though?

1 —
800=Tie g)=55&

1T l
1/2 1/2
-4 4 -4 4

g(x)=max(0,x)

A
/1
1
0

Sigmoid Tanh

RelLU

RNN Cell Forward and Backward

Why tanh?

\ hy = Winxs + bin + Wiphi—1 + brp)
1 -

1. Non-linearity
2. Tanhis bounded; can mitigate exploding gradient problem

—_
v

RNN Phoneme Classifier

i
o

e Many-to-one task ‘

e Inputsequence is passed through a few
layers of RNN cells
e The final hidden state at the final

timestamp is passed through a linear
layer to give us the phoneme class 7

X1 X2

7

RNN Cell Linear
Forward Forward

GRU Cell Forward and Backward

ry = U(Wrm - X+ br:z: + W'rh) ht—l 1 brh)

Z; = O-(Wzm Xy o bz:z: o+ th d ht—l o+ bzh)

n; = tanh(wnm - Xt + bnm +r:© (th : ht—l 24 bnh))
hy=(1-2;)On;+2z,0h;_;

Reset Gate:
Update Gate:
Memory Content:

Hidden State:
ylt]

hit-1] > -] ;(I\ 7[\ T> h(t]
X

GRU Cell Forward and Backward contin.

Reset Gate: ry =@WT$ Xt +bry + Wop-hy 1+ brh)
Update Gate: Z4 2@\7\775m Xt + b, + W, -hy 1+ bzh)
n; =tanh(W,, - X¢ + bpz +1: © (W - hi_1 +byy))

Memory Content:

Hidden State: ht = (1 — Zt) ® n; + Z; ® ht—l

Why sigmoid?

Sigmoid is limited to the values O to 1 — This can

describe how much info to pass
o Close to O: we want to “forget”
o Closeto 1: we want to “remember”

v

GRU Cell Forward and Backward contin.

Reset Gate: r,=0(W,z - X¢+byy + Wy, -hy_1+b,p)

Update Gate: 7t =0(W.z Xt + b + W -hy 1 +by)
Memory Content: n; = tanh(W, - X + by +1: © Wy - hy g + bnh))l
Hidden State: h)=(1-2z)0On;+2z,®h;_,4

We do an element-wise product with a linear transformation of the
previous hidden-state. We are combining the transformation of the
inputs from candidate space with the information we are retaining from
previous hidden state.

GRU Cell Forward and Backward contin.

e GRU backward be the longest question in HW3P1
e Tips:
o Allintermediate dWs and dbs should be correct to make sure that your dx and dh are
correct
o Useful resource: How to compute a derivative
Break down complicated equations into unary/binary operations
o e.g.f(x) =tanh(r © (Wx+b)), we want to decompose it into:
m Z1=Wx+b
m Z2=r © (Wx+b)
m f(x)=tanh(Z2)
m Derivative for each step would be easy and lastly we apply chain rule to get our f’(x)

https://deeplearning.cs.cmu.edu/S25/document/readings/How%20to%20compute%20a%20derivative.pdf

Chain rule through element-wise multiplication

Assume that the shape of derivative wrt a matrix is the same as that of the matrix.
Let C = A© B (element-wise)

- Thismeans A, B, and C have the same shape
- Only elements of the same position are related to each other — derivatives flow only position-wise.

- Therefore,dLdA =dLdC e B and dLdB =dLdC e A

Chain rule through matrix multiplication

Assume that the shape of derivative wrt a matrix is the same as that of the matrix.
Let C = AB (matrix multiplication). The shapes of A, B, Carea x b, b x ¢, and ¢ x a respectively.

Think about which all elements of C does A(i, j) influence.
It influences all elements of C in row i through multiplication with the j-th element in every column
of B.

e So,dLdA(i,j) = sum[k=1 to c] dLdC(i, k)B(j, k)

e Doing this for every element gives dLdA = dLdC X B.T (matrix multiplication)

DON'T JUST MATCH SHAPES. UNDERSTAND HOW VALUES MATCH INSTEAD. SHAPES WILL
FOLLOW.

Chain rule through matrix multiplication (contin.)

GRU Inference - Character Predictor

Many-to-many task, the model is supposed to have an output for each timestamp.

Different from RNN Phoneme classifier, here we need to pass the hidden state at each timestamp to a
linear layer to predict the character at each t, instead of just the previous timestamp’s hidden state.

Variants
fw fw fw

many to many many to many
. aon god
By] - & N
v P

uon oog

* 1: Delayed sequence to sequence, e.g. machine translation

¢ 2: Sequence to sequence, e.g. stock problem, label prediction
¢ EtC...

Connectionist Temporal Classification (CTC)

1) WhyCTC?
2) How does it work?
3) Implementationin HW3 P1

Why CTC?

A CTCis used to calculate loss when our input sequences and output labels have

different lengths and no fixed alignment.
A This method allows models to learn without needing pre-aligned data, which is
crucial for applications like speech recognition.

Input (from RNN over time) » "hhheelllooo" (length = 10)

Target sequence » "hello"

Implementation [CTC/CTC.pyl

a CTC

A extend_target_with_blank()
A get_forward_probs()
A get_backward_probs()

A get_posterior_probs()
1 CTCLoss

1. Extend target with blank

B |1y

1Y

extend symbols
—» BLANK| B |BLANK| 1Y BLANK| |IY |BLANK| F |BLANK

target

Figure 13: Extend symbols

1. Extend target with blank

extend symbols
B [y [IY | F »

—>» BLANK| B | BLANK| 1Y BLANK| |Y |BLANK| F

BLANK

Figure 13: Extend symbols

skip connect
BLANK' B |BLANK| 1Y BLANK 1Y BLANK F

BLANK

Figure 14: Skip connections

2. Forward Probabilities

/B/
/\Y/
/F/
/\Y/

at,r) = P(So-.Sr, 50 =S| X) = >

q:Sq€pred(Sy)

a(t - 1’ q)yfr

5 : SN R P EE ve y? v6
YN v 3 v o yvo| |
V8 i N ¥ % A
][] L Now BH Y
0 1 2 3 y 5 5 7

v

2. Forward Probabilities alt;r) = P(So-Srs=SIX)= Y alt-Lau

q:Sq€Epred(Sy)

t=1 t=2 t=3 t=4 t=5 t=6
BLANK 0 0 0 0 0 0
B 4 05 .045 0135 00945 000945
BLANK 0 04 072 0234 02214 0
Y1 o 06 0 0468 06696 01971
e BLANK 0 0 048 .0096 03384 0
Y o 0 0 0192 02304 011376
BLANK =0 0 0 0 01152 0
F 0 0 0 0 01728 .015552
BLANK 0 0 0 0 0 0
’ input ’ x1 » » » x4 » x5 » X6

Figure 15: Forward Algorithm

3. Backward Algorithm

A Computing probabilities from right to left

[B(t, r) represents probability of generating the rest of the sequence starting from
timet

B(t,r) = P(st+1 € succe(Sy), suce(Sy), ..., Sk—1|X) = Z B(t + 1,q)yfj1
q:SqEsuce(Sy)

b " R g "
/B/ \(5“ R Y S K v ROl KL oe y7 Vs
N
N

/\Y/ vi¥ y5' y3' y3¥ ve¥
TR AREARFANE: VE
N/ | ydY yi¥ y3¥ e V4 4

;0 1 2 3 4 5 6 s

v

4. CTC Posterior Probability

A Represents probability of being in state r at time t given input sequence.

a(t,r)B(t,r)
> at,T)B(t,r)

(1) = P8 = 8518, X) =

5. CTC Loss Computation

A Once we know the posterior probability, we can plug it in to calculate the loss,
which will ultimately be used to train your network.

. e s v 1
A(t,7) = P(s, = 5,18, X) = 20 DAT) =) L2, e ol y(tm)
Er' Ot(t,’l”)ﬂ(t,’l‘) DIV = _Zzy(trr)l"gyf(r) yt t r:S(r)=l

CTC Decoding [CTC/CTCDecoding.py]

A CTCloss gives us a probability distribution over possible alighments, but it does not
directly produce the final output sequence.

A Instead, we need a decoding strategy to transform the model's output into meaningful
text. There are two primary methods for this: Greedy Search and Beam Search.

©
@&—E—®
®

®
©
©®® ®

A standard beam search algorithm with an
alphabet of {€, a, b} and a beam size of three.

Greedy Search

A Picks highest probability token at each timestep.
(4 Collapses repeated tokens and removes blanks.

Compress
- B - A A T - "BAT"
X |oa3| X X lo29| X [085| X [042| X =——> 3.94e-4
Symbol Product
Set
0.25 0.27 0.35 0.11 0.18 0.22 0.32
A 0.20 0.20 0.29 0.35 0.07 0.05
B 0.15 0.33 0.24 0.06 0.16 0.26
C 0.20 0.13 0.13 0.12 0.13 0.31
b 0.10 0.07 0.23 0.29 0.42 0.06

Pseudocode provided in the write-up.

Remember, when extending a path with a new symbol, you’ll encounter three scenarios:

1. The new symbol is the same as the last symbol on the path.
2. The last symbol of the path is blank.

Il. Beam Search

Efficient Beam Search:

Input: SymbolSets, y_probs, BeamWidth
Output: BestPath, MergedPathScores

0. Initialize:
1. BestPaths with a blank symbol path with a score of 1.0.
2. TempBestPaths as an empty dictionary.
1. For each timestep in y_probs:
1. Extract the current symbol probabilities.
2. For each path, score in BestPaths limited by BeamWidth:
1. For each new symbol in the current symbol probabilities:

1. Based on the last symbol of the path, determine the new path.

2. Update the score for the new path in TempBestPaths.

3. Update BestPaths with TempBestPaths.
4. Clear TempBestPaths.

2. Initialize MergedPathScores as an empty dictionary.

3. For each path, score in BestPaths:
1. Remove the ending blank symbol from the path.
2. Update the score for the translated path in MergedPathScores.
3. Update the BestPath and BestScore if the score is better.

4. Return BestPath and MergedPathScores.

blank Symbol Set

EACILE

y_probs{0]

0.49 0.03 0.47

y_probs[1]
0.38 0.44 0.18

y_probs(2]
0.02 0.40 0.58

3. The last symbol of the path is different from the new symbol and is not blank.

tempBestPathsWithScores. : {}

bestPathsWithScores : {(-'): 1.0}

For the top k bestpaths,
iterate over each of the symbols
Extend each best path and update its scores

tempBestPathsWithScores. : {(-'): 0.49, ('a',): 0.03, ('b'): 0.47}

bestPathsWithScores Hil(

)), 0.49), (('b'), 0.47), (('a',), 0.03)]

tempBestPathsWithScores. :

{(~): 0.1862, ('a"): 0.229, (‘a-'): 0.0114, (‘ab): 0.0054, ('b',): 0.1728, (b-):
0.1786, (bal): 0.2068}

bestPathsWithScores : [((a}), 0.229), ((ba’), 0.207), ('), 0.186)]

|
U

tempBestPathsWithScores. :
{(-,):0.0037, (‘a',): 0.166, ('a-'): 0.0046, (‘'ab’): 0.132, ('b',): 0.108, ('ba’):
0.083, (‘ba-'): 0.004, (‘bab'): 0.1195}

A\ 4

MERGE tempBestPathsWithScores to get final Scores

Prune blanks from the end of a path and merge with existing scores of
pruned paths

Return bestPath, mergedPathScores

‘a' ->0.17058

Figure 20: Efficient Beam Search procedure

Il. Beam Search

EI
T=1 . T=2 . . T=3
A - | 0.1862 | A - | 0003724 |
A < -A | 0.2156 | W - < -A | 007448 | > A
{ B | 0.0882 " -B | 0.107996 /

/ //

//

PR T — //

4 - Joa9] A A 00114 \ 4 A- | 0.004576 [/
sos><— A 003 —— A < { AA | 0.0132 | 4 A <— AA | 009152 [_~AB
M B 047} {AB | 0.0054 4 AB | 0.132794

_+B-0.1786 _~ BA- | 0.004136
VB < ‘BA 'BA | 0.2068 | ~ BA <— BAA | 0.08272 ~__~BAB
1 BB | 0.0846 4 BAB | 0.119944

Pseudocode can be found in the write-up and in future lectures slides.

Thank you!

Q&A

