HW3P1 Bootcamp

RNNs, GRUs, CTC, and Greedy/Beam Search

Spring 2025

Acknowledgement: Fall 2024 TAs

Logistics

- Early Submission : March 14th, 11:59pm
- On-Time Submission: March 28th, 11:59pm

Two approaches: **Standard** and **Autograd**

No late days can be used for Homework part 1s, please plan accordingly!

Structure of RNNs

A simple RNN that does seq-to-seq task with one RNN cell

RNN Cell Forward and Backward

h_{t-1} ht tanh xt

$$h_t = tanh(W_{ih}x_t + b_{ih} + W_{hh}h_{t-1} + b_{hh})$$

Tip: very similar to **linear.py** in HW1P1.

We are just applying a tanh function to linear transformations of x_t and h_{t-1}

Why Tanh though?

RNN Cell Forward and Backward Why tanh?

$$h_t = \displaystyle tanh(W_{ih}x_t + b_{ih} + W_{hh}h_{t-1} + b_{hh})$$

- 1. Non-linearity
- 2. Tanh is bounded; can mitigate exploding gradient problem

RNN Phoneme Classifier

- Many-to-one task
- Input sequence is passed through a few layers of **RNN cells**
- The final hidden state at the final timestamp is passed through a linear layer to give us the phoneme class

GRU Cell Forward and Backward

Reset Gate:

Update Gate:

Memory Content:

Hidden State:

$$\begin{aligned} \mathbf{r}_t &= \sigma(\mathbf{W}_{rx} \cdot \mathbf{x}_t + \mathbf{b}_{rx} + \mathbf{W}_{rh} \cdot \mathbf{h}_{t-1} + \mathbf{b}_{rh}) \\ \mathbf{z}_t &= \sigma(\mathbf{W}_{zx} \cdot \mathbf{x}_t + \mathbf{b}_{zx} + \mathbf{W}_{zh} \cdot \mathbf{h}_{t-1} + \mathbf{b}_{zh}) \\ \mathbf{n}_t &= tanh(\mathbf{W}_{nx} \cdot \mathbf{x}_t + \mathbf{b}_{nx} + \mathbf{r}_t \odot (\mathbf{W}_{nh} \cdot \mathbf{h}_{t-1} + \mathbf{b}_{nh})) \\ \mathbf{h}_t &= (1 - \mathbf{z}_t) \odot \mathbf{n}_t + \mathbf{z}_t \odot \mathbf{h}_{t-1} \end{aligned}$$

GRU Cell Forward and Backward contin.

Reset Gate:

Update Gate:

Memory Content:

Hidden State:

$$\begin{aligned} \mathbf{r}_{t} &= \sigma (\mathbf{W}_{rx} \cdot \mathbf{x}_{t} + \mathbf{b}_{rx} + \mathbf{W}_{rh} \cdot \mathbf{h}_{t-1} + \mathbf{b}_{rh}) \\ \mathbf{z}_{t} &= \sigma (\mathbf{W}_{zx} \cdot \mathbf{x}_{t} + \mathbf{b}_{zx} + \mathbf{W}_{zh} \cdot \mathbf{h}_{t-1} + \mathbf{b}_{zh}) \\ \mathbf{n}_{t} &= tanh (\mathbf{W}_{nx} \cdot \mathbf{x}_{t} + \mathbf{b}_{nx} + \mathbf{r}_{t} \odot (\mathbf{W}_{nh} \cdot \mathbf{h}_{t-1} + \mathbf{b}_{nh})) \\ \mathbf{h}_{t} &= (1 - \mathbf{z}_{t}) \odot \mathbf{n}_{t} + \mathbf{z}_{t} \odot \mathbf{h}_{t-1} \end{aligned}$$

Why sigmoid?

- Sigmoid is limited to the values 0 to 1 → This can describe how much info to pass
 - Close to 0: we want to "forget"
 - Close to 1: we want to "remember"

GRU Cell Forward and Backward contin.

Reset Gate:	$\mathbf{r}_t = \sigma(\mathbf{W}_{rx}\cdot\mathbf{x}_t + \mathbf{b}_{rx} + \mathbf{W}_{rh}\cdot\mathbf{h}_{t-1} + \mathbf{b}_{rh})$
Update Gate:	$\mathbf{z}_t = \sigma(\mathbf{W}_{zx} \cdot \mathbf{x}_t + \mathbf{b}_{zx} + \mathbf{W}_{zh} \cdot \mathbf{h}_{t-1} + \mathbf{b}_{zh})$
Memory Content:	$\mathbf{n}_t = tanh(\mathbf{W}_{nx}\cdot\mathbf{x}_t + \mathbf{b}_{nx} + \mathbf{r}_t \odot (\mathbf{W}_{nh}\cdot\mathbf{h}_{t-1} + \mathbf{b}_{nh}))$
Hidden State:	$\mathbf{h}_t = (1 - \mathbf{z}_t) \odot \mathbf{n}_t + \mathbf{z}_t \odot \mathbf{h}_{t-1}$

We do an element-wise product with a linear transformation of the previous hidden-state. We are combining the transformation of the inputs from candidate space with the information we are retaining from previous hidden state.

GRU Cell Forward and Backward contin.

- GRU backward be the longest question in HW3P1
- Tips:
 - All intermediate **dWs** and **dbs** should be correct to make sure that your **dx** and **dh** are correct
 - Useful resource: <u>How to compute a derivative</u>
 - Break down complicated equations into unary/binary operations
 - e.g. $f(x) = tanh(r \odot (Wx+b))$, we want to decompose it into:
 - Z1 = Wx + b
 - Z2 = r ⊙ (Wx+b)
 - f(x) = tanh(Z2)
 - Derivative for each step would be easy and lastly we apply chain rule to get our f'(x)

Chain rule through element-wise multiplication

Assume that the shape of derivative wrt a matrix is the same as that of the matrix.

Let $C = A \odot B$ (element-wise)

- This means A, B, and C have the same shape
- Only elements of the same position are related to each other \rightarrow derivatives flow only position-wise.
- Therefore, $dLdA = dLdC \odot B$ and $dLdB = dLdC \odot A$

Chain rule through matrix multiplication

Assume that the shape of derivative wrt a matrix is the same as that of the matrix.

Let C = AB (matrix multiplication). The shapes of A, B, C are *a* x *b*, *b* x *c*, and *c* x *a* respectively.

- Think about which all elements of C does A(*i*, *j*) influence.
- It influences all elements of C in row *i* through multiplication with the *j*-th element in every column of B.
- So, dLdA(i, j) = sum[k=1 to c] dLdC(i, k)B(j, k)
- Doing this for every element gives dLdA = dLdC X B.T (matrix multiplication)

DON'T JUST MATCH SHAPES. UNDERSTAND HOW VALUES MATCH INSTEAD. SHAPES WILL FOLLOW.

Chain rule through matrix multiplication (contin.)

GRU Inference - Character Predictor

Many-to-many task, the model is supposed to have an output for each timestamp.

Different from RNN Phoneme classifier, here we need to pass the hidden state at **each** timestamp to a linear layer to predict the character at each t, instead of just the previous timestamp's hidden state.

Connectionist Temporal Classification (CTC)

- 1) Why CTC?
- 2) How does it work?
- 3) Implementation in HW3 P1

Why CTC?

- CTC is used to calculate loss when our input sequences and output labels have different lengths and no fixed alignment.
- □ This method allows models to learn without needing pre-aligned data, which is crucial for applications like **speech recognition.**

Input (from RNN over time) → "hhheelllooo" (length = 10)

Target sequence → "hello"

Implementation [CTC/CTC.py]

СТС

- extend_target_with_blank()
- □ get_forward_probs()
- get_backward_probs()
- get_posterior_probs()
- CTCLoss

1. Extend target with blank

Figure 13: Extend symbols

1. Extend target with blank

Figure 14: Skip connections

2. Forward Probabilities

$$\alpha(t,r) = P(S_0...S_r, s_t = S_r | X) = \sum_{q:S_q \in pred(S_r)} \alpha(t-1,q) y_t^{S_r}$$

2. Forward Probabilities

$$\alpha(t,r) = P(S_0...S_r, s_t = S_r | X) = \sum_{q:S_q \in pred(S_r)} \alpha(t-1,q) y_t^{S_r}$$

Figure 15: Forward Algorithm

3. Backward Algorithm

- Computing probabilities from right to left
- β(t, r) represents probability of generating the rest of the sequence starting from time t

$$\beta(t,r) = P(s_{t+1} \in succ(S_r), succ(S_r), ..., S_{K-1}|X) = \sum_{q:S_q \in succ(S_r)} \beta(t+1,q) y_{t+1}^{S_q}$$

4. CTC Posterior Probability

Represents probability of being in state **r** at time **t** given input sequence.

$$\gamma(t,r) = P(s_t = S_r | S, X) = \frac{\alpha(t,r)\beta(t,r)}{\sum_{r'} \alpha(t,r)\beta(t,r)}$$

5. CTC Loss Computation

• Once we know the posterior probability, we can plug it in to calculate the loss, which will ultimately be used to train your network.

CTC Decoding [CTC/CTCDecoding.py]

- CTC loss gives us a **probability distribution over possible alignments**, but it does **not** directly produce the final output sequence.
- □ Instead, we need a decoding strategy to transform the model's output into meaningful text. There are two primary methods for this: **Greedy Search** and **Beam Search**.

A standard beam search algorithm with an alphabet of $\{\epsilon,a,b\}$ and a beam size of three.

I. Greedy Search

- Picks highest probability token at each timestep.
- Collapses repeated tokens and removes blanks.

Pseudocode provided in the write-up.

Remember, when extending a path with a new symbol, you'll encounter three scenarios:

- 1. The new symbol is the same as the last symbol on the path.
- 2. The last symbol of the path is blank.
- 3. The last symbol of the path is different from the new symbol and is not blank.

Efficient Beam Search:

Input: SymbolSets, y_probs, BeamWidth Output: BestPath, MergedPathScores

0. Initialize:

- 1. BestPaths with a blank symbol path with a score of 1.0.
- 2. TempBestPaths as an empty dictionary.
- 1. For each timestep in y_probs:
 - 1. Extract the current symbol probabilities.
 - 2. For each path, score in BestPaths limited by BeamWidth:
 - 3. Update BestPaths with TempBestPaths.
 - 4. Clear TempBestPaths.
- 2. Initialize MergedPathScores as an empty dictionary.
- 3. For each path, score in BestPaths:
 - 1. Remove the ending blank symbol from the path.
 - 2. Update the score for the translated path in MergedPathScores.
 - 3. Update the BestPath and BestScore if the score is better.
- 4. Return BestPath and MergedPathScores.

II. Beam Search

Pseudocode can be found in the write-up and in future lectures slides.

